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Abstract

The large biological distance between genetic risk loci and their mechanistic consequences in the tissue of interest
limits the ability to establish functionality of susceptibility variants for genetically complex traits. Such a biological gap
may be reduced through the systematic study of molecular mediators of genomic action, such as epigenetic
modification. Here, we report the identification of robust genetic estimators of whole-blood CpG methylation, which
can serve as intermediate molecular traits amenable to association testing with other genetically complex traits. We
describe the relationship between these estimators and gene expression, demonstrate their genome-wide
applicability to association testing even in the absence of individual genotypic data, and show that these estimators
powerfully identify methylation-related genomic loci associated with polygenic traits and common diseases, such as
schizophrenia. The use of genetic estimators for blood DNA methylation, which are made publically available, can

serve as a valuable tool for the identification of epigenetic underpinnings of complex traits.

Introduction

Improving understanding, diagnosis, and therapy of
human disease has been one of the central promises of the
human genome project'. This promise is being increas-
ingly fulfilled. For example, cancer research has benefited
dramatically from the discoveries related to the human
genome?, mainly because the genomic mechanisms
leading to the development of many cancers are amenable
to direct observation. However, the situation is slightly
different in disorders for which the underlying molecular
events are not easily accessible, as is the case for mental
disorders®. Advances in the development of high-

Correspondence: Virginie Freytag (virginiefreytag@unibas.ch) or

Andreas Papassotiropoulos (andreas.papas@unibas.ch)

'Division of Molecular Neuroscience, Department of Psychology, University of
Basel, CH-4055 Basel, Switzerland

Transfaculty Research Platform Molecular and Cognitive Neurosciences,
University of Basel, CH-4055 Basel, Switzerland

Full list of author information is available at the end of the article

throughput genotyping and analytical software, and the
launch of large collaborative efforts have led to the
identification of numerous well-validated genetic risk
factors for such common disorders. However, the func-
tional relevance of most discovered loci and the molecular
mechanisms behind the reported genetic association sig-
nals remain elusive®,

One of the main reasons for the limited ability to
establish functionality of susceptibility variants is the large
biological distance between a genetic polymorphism and
its related mechanistic consequences in the tissue of
interest. Such biological gap may be reduced by the study
of molecular mediators of genomic action, such as gene
expression”. For example, in such common neu-
ropsychiatric disorders as schizophrenia, genetic sus-
ceptibility variants are significantly enriched in promoter
and enhancer regions and point to a functional link
between disease-associated noncoding single-nucleotide
polymorphisms (SNPs) and transcriptional regulation in

Dominique J.-F. de Quervain and Andreas Papassotiropoulos jointly supervised this work.

© The Author(s) 2018

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.


http://orcid.org/0000-0002-3933-3289
http://orcid.org/0000-0002-3933-3289
http://orcid.org/0000-0002-3933-3289
http://orcid.org/0000-0002-3933-3289
http://orcid.org/0000-0002-3933-3289
http://orcid.org/0000-0003-3922-109X
http://orcid.org/0000-0003-3922-109X
http://orcid.org/0000-0003-3922-109X
http://orcid.org/0000-0003-3922-109X
http://orcid.org/0000-0003-3922-109X
http://orcid.org/0000-0002-5716-786X
http://orcid.org/0000-0002-5716-786X
http://orcid.org/0000-0002-5716-786X
http://orcid.org/0000-0002-5716-786X
http://orcid.org/0000-0002-5716-786X
http://creativecommons.org/licenses/by/4.0/
mailto:virginie.freytag@unibas.ch
mailto:andreas.papas@unibas.ch

Freytag et al. Translational Psychiatry (2018)8:31

the brain®. The integration of transcriptomics data in the
study of the genetic factors of complex traits has sig-
nificantly improved our understanding of their genetic
basis®. Thus, methods that reduce the gap between
genetic susceptibility and its functional consequences are
expected to increase our understanding of the genetic
underpinnings of genetically complex traits.

Genetic estimators for gene expression have been
recently proposed in this context®”. These methods
capitalize on the joint additive effects of cis-markers on a
given expression trait to estimate gene expression from
individual genotypes. At the population level, the derived
genetic estimates represent an intermediate molecular
trait, amenable to association testing with the phenotype
under study. This approach can be viewed as genetic
correlation testing for which a significant association is
interpreted as existence of shared co-localizing genetic
factors between the complex phenotype and the investi-
gated expression trait.

Here we report the generation of robust genetic esti-
mators of epigenetic regulation as an attempt to provide
insights into the molecular basis of polygenic traits by
minimizing the biological gap between genetic variation
and its functional impact. We focused on DNA methy-
lation (specifically on the methylation of 5'-C-phosphate-
G-3' (CpQ) sites), the most extensively studied epigenetic
modification to date, which directly regulates important
molecular processes such as gene expression, imprinting,
and chromosomal inactivation®'°, High-throughput
methylomic profiling studies have highlighted the strong
local genetic regulation of DNA methylation'*™"°, with
possibly multiple co-localized markers contributing
independently to variation in DNA methylation at indi-
vidual CpG sites'®.

We generated genetic estimators of DNA methylation
(DNAm), that allow testing for localized shared genetic
contributions between DNAm variation and complex
traits. We demonstrate their applicability even to studies
providing summary SNP statistics only, and show exem-
plarily that such estimators result in the identification of
epigenetic underpinnings of a common neuropsychiatric
disease.

Materials and methods
Study datasets

Whole-blood methylomic profiles and genotypic data
were obtained from healthy young adults recruited in the
course of two separate studies conducted in Basel, pre-
viously described'”, and from elderly adults (ACD BONN
sample, see below).

The Basel Imaging dataset (BASEL1) included N =533
participants (age range: 18-37 years old; 222 males) and
the independent Basel Cognitive dataset (BASEL2)
included a total of N = 319 participants (age range: 18-37
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years old; 97 males). The study protocols were approved
by the ethics committee of the cantons of Basel-Stadt and
Basel-Landschaft. All participants gave written informed
consent after complete description of the study protocols.
Subjects were free of any neurological or psychiatric
condition and did not take medication at the time of the
experiment.

The ongoing German Study on Ageing, Cognition, and
Dementia (ACD) started in 2003 and consists of 3327
non-demented elderly subjects over 75 years of age who
were randomly selected from the general-practice registry
in six German cities (Bonn, Dusseldorf, Hamburg, Leipzig,
Mannheim, and Munich)'®. The entire study protocol was
approved by the local ethics committees at the University
of Bonn, Bonn, Germany; the University of Hamburg,
Hamburg, Germany; the University of Duesseldorf,
Duesseldorf, Germany; the University of Heidelberg/
Mannheim, Mannheim, Germany; the University of
Leipzig, Leipzig, Germany; and the Technical University
of Munich, Munich, Germany. Before participation writ-
ten informed consents were collected from all subjects.
Participants were followed-up in 1.5-year intervals and
received cognitive testing at each follow-up'’. Out of the
ACD cohort a subsample comprising 302 subjects (age
range: 79-94 years old; 88 males) with available whole-
blood methylomic data and genotypic data was used in
this study. After methylomic and genotypic samples
quality control, a total of N =288 subjects (mean age:
84.2, s.d. 2.9; 82 males) were included in analysis. Subjects
were free of any neurological or psychiatric condition.

Methylomic profiling
BASEL1 and BASEL2 datasets

A detailed description of methylomic profiling protocols
can be found in Milnik et al."’”. Briefly, methylomic pro-
filing was performed using the Illumina HumanMethyla-
tion450 array. Samples of non-European ancestry were
identified using Hapmap references population genotypes
and excluded from analysis (n =35 in BASEL1 sample,
yielding N = 533 remaining for analysis; none identified in
BASEL2 sample). The p-values were calculated from
SWAN normalized intensities®”. Subsequently, p-values
were M-transformed and adjusted for processing plate
effect (z-transformation), age, sex, and the main sources
of technical variations inferred from principal compo-
nents analysis'’. The B-values with detection p-value >
0.05 were considered as missing. Individual CpG sites
were excluded based on the following criteria: non-CpG
context, non-autosomal probes, probes with a SNP
mapping to the target CpG site or with three or more
SNPs within the 50-mer probe (minor allele frequency
(MAF)>0.01) (based on RnBeads package annotation),
multi-mapping or polymorphic CpGs (MAF >0.01 in
European population) reported in refs.**?, and probes
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with missing rate 25% in final samples. Prior to analysis,
missing values were imputed using the R package impute
(https://bioconductor.org/packages/release/bioc/html/
impute.html) with k= 10.

ACD BONN dataset

The Illumina HumanMethylation450 array was used to
quantify DNA methylation in bisulfite converted genomic
DNA from whole-blood samples. Each sample consisted
of one technical probe. Subjects were excluded based on
the following criteria: (1) inconsistency between reported
and methylome estimated gender (two subjects excluded);
(2) exceeding more than four s.d. from the mean on one
of the two first principal components (one subject
excluded); (3) inconsistency between actual genotypes and
those inferred from methylomic data (none excluded);
and (4) subjects with more than 1% of sites with detection
p>0.05 (none detected). An additional subject processed
on a single plate was further excluded from analysis. This
yielded a total N =297 samples for analysis. Methylation
values were pre-processed using the wateRmelon pack-
age™. First, CpG sites with beadcount <3 in 5% of sam-
ples and/or sites with detection p > 0.05 in 1% of study
samples were excluded. The p-values were next normal-
ized using the dasen algorithm, logit transformed, adjus-
ted for technical covariates (plate and Sentrix ID) using
ComBat®*, and finally adjusted for age, sex, and the six
first principal component analysis axes.

Cell composition adjustment

Cell type proportion estimates (CD4 T cells, CDS8
T cells, natural killers, granulocytes, monocytes, and
lymphocytes B) were obtained for each sample using the
EpiDISH-CIBERSORT approach®. In each testing data-
set, we compared EstiMeth model performance before
and after further linear regression adjustment of DNAm
for the estimated cell type proportions.

Genotyping
BASEL1 and BASEL2 datasets

DNA was isolated from saliva sample and genotyped
using the Affymetrix Genome-Wide Human SNP array
6.0 following the manufacturer’s protocol. Genotype
imputation was performed independently for each
BASEL1 and BASEL2 dataset, on the University of
Michigan Imputation Server’® (settings for marker
imputation: MAF > 0.01, call rate > 95%). In the BASEL1
dataset, approximately 5 million imputed SNPs with
MAF > 0.05, Hardy—Weinberg equilibrium (HWE) p-
value > 0.0001, and imputation score R>>0.8 were
retained for training genetic models of DNAm estimation.
To allow complete evaluation of the trained models, all
selected markers were considered in the BASEL2 dataset.
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ACD BONN dataset

DNA was isolated from whole-blood samples and gen-
otyped using the Illumina Infinium OmniExpressExome-
8v1.3 Kit following the manufacturer’s protocol. Illumi-
na’s GenomeStudio software was used to export the
genotyping raw data into plink format. Variant and
sample quality control was performed before imputation.
Samples were excluded if their ancestry was non-Eur-
opean, if samples were related, if they had an outlying
heterozygosity rate, or if they had a sample call rate < 98%.
SNPs with a HWE p-value > 107% a MAF > 0.01, and a
call rate > 95% were included. This led to a SNP reduction
from 932,703 to 606,260 before the imputation. Genotype
imputation was performed on the University of Michigan
Imputation Server®.

For evaluation of EstiMeth models, SNPs were filtered
out based on the following criteria: (1) inconsistency of
allele pairs between EstiMeth models and imputed gen-
otypes, (2) MAF < 0.01, and (3) genotype imputation R* <
0.5. Models with less than 50% SNP coverage were dis-
carded from analysis (n = 1061), yielding a total of 85,170
models evaluated.

EstiMeth model implementation

A total of 395,014 CpGs, measured in both BASEL1 and
BASEL2 datasets and encompassed by more than one cis-
SNPs within +1 Mbp, were considered for analysis. At
each of these individual CpG sites, an elastic net*” genetic
additive model was fitted between all encompassing
imputed cis-SNPs, and adjusted DNA methylation signal.

Genotypes were coded as: 0: homozygous for the major
allele, 1: heterozygous, and 2: homozygous for the minor
allele. Models were implemented using the glmnet R
package®® with a elastic net constraint fixed to 0.5. Default
standardization of genotypes (mean centering and unit
variance) was applied within the training procedure which
resulted in slight improvement of model performance
(Supplementary Table 1). The p-coefficients were
returned on the original genotype scale. The A tuning
parameter was determined using a 10-fold cross-valida-
tion scheme. This modeling allowed simultaneous
shrinkage of individual p-coefficients and selection of
variables, thus drastically reducing the number of SNPs
finally included in each model (average n=3522 SNPs
before selection, average n=26 SNPs after selection
across all non-null models).

Model performance was assessed using Pearson’s
squared correlation r* between the model estimate—lin-
ear combination between elastic net inferred p-coeffi-
cients and observed genotypes—and the actual adjusted
DNAm signal; for the training dataset, 7* refers to cross-
validation performance.

We derived a set of robust genotype-based estimators
for DNAm—i.e. EstiMeth models—as follows: (1) all
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models exhibiting a significant association between the
elastic net-derived cross-validation estimator and the
actual values in the BASEL1 training dataset (false dis-
covery rate (FDR) < 0.05 across all non-null models); (2)
among those, all models exhibiting a significant associa-
tion between the elastic net-derived estimator and the
actual values in the BASEL2 testing dataset (FDR < 0.05);
(3) all models resulting in a positive correlation between
actual and genotype-based estimated value in the testing
dataset. This yielded a total of 86,710 models likely
reflecting a robust genetically driven DNAm signal at the
corresponding CpG (minimum observed 7* in training
dataset = 0.94%; minimum 7* in testing dataset = 1.37%).

MetaMeth implementation
Statistical model

We relied on the approach recently proposed by Bar-
beira et al.*’ for estimating genetic correlation between
EstiMeth model and a trait based on genome-wide asso-
ciation study (GWAS) summary statistics solely. Specifi-
cally, consider a given EstiMeth model comprising
weights W at p SNPs. Let T, denote the t-value between
the EstiMeth linear combination and the trait. Let %, be
the observed covariance matrix of the p SNPs, and Z the
vector of standardized coefficients obtained from testing
each SNP for association with the trait (GWAS summary
statistics, f/se(3)).

As described by Barbeira et al.*’, T, is equivalent to Zg:

o B, 1-R
Ty =7, =S w P A (1)
o 9ese(By) 1 _Rg
with
6, = VWZI,W

0y the standard deviation at SNP k;

R? the proportion of phenotypic variance explained by
SNP £;

R; the proportion of phenotypic variance explained by
EstiMeth estimator.

In the absence of genotypes, the Rz term cannot be
estimated and the covariance structure X, has to be
estimated from a reference population, which leads to the
approximation:

T, ~ MetaMethZy = wy— P (2)
k=1 Owef se(By)

p ~
with

G/gr?f = VW2pyW

This approximation has two potential caveats.
Firstly, as pointed by Barbeira et al.>’, removal of the R’
ratio can lead to remarkable underestimation of T, for
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SNPs with large effect sizes. This deviation was notably
observed when comparing EstiMeth and MetaMeth
approaches on DNAm signal, which implicate large effect
sizes. Considering the actual sample’s covariance matrix,
the exact statistic derived from Eq. 1 is equal to T,
(Supplementary Figure 7-A). Removal of the R® ratio in
Eq. 2, while still using the exact sample’s covariance
matrix, leads to deviation from the original T, with a
global decrease of derived statistics (Supplementary Fig-
ure 7-B). The same observation was drawn from the
power study presented in Supplementary Figure 6.

Secondly, the divergence between the reference popu-
lation and actual covariance structures can lead to biased
estimates. Using Eq. 2, we observed inflation of genome-
wide level Type I error (Supplementary Figure 5). To
account for this uncertainty, we penalized the denomi-
nator 0, by multiplying the diagonal of the 3., matrix (
Zpref = Zpref + Asdiag (Zp,ef) with 4, =0.1)". We found
empirically 4, =0.1 to achieve conservative results, at the
cost of decreased power. Unless otherwise specified, all
reported results were obtained using 4, =0.1

1000G reference panel

The SNPs covariance matrices 2, were inferred from
the publicly available 1000G reference genotypes (http://
ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/)
considering N = 503 samples from European populations.
SNPs with allele pair mismatching alleles observed in the
BASEL1 dataset were discarded, yielding a total of
5,059,361 markers referred as 1000G SNP panel (99% of
markers from BASEL1 dataset). Elastic net models were
re-trained on the BASEL1 sample using the 1000G SNP
panel. Models not reaching the minimum 7> initially
observed in the training and BASEL2 testing datasets were
excluded from MetaMeth benchmarking analyses (n=
86,518 models remaining out of 86,710). Overall, we
observed comparable performance of the EstiMeth mod-
els implemented on the BASEL1 and 1000G SNP panels
(correlation between cross-validation * across all Esti-
Meth CpGs > 0.99; correlation between BASEL2 testing
> 0.99).

Hapmap reference panel

To ensure sufficient coverage of EstiMeth models for
the MetaMeth scan of GWAS summary statistics imputed
from HapMap reference panel, we additionally provide
EstiMeth models inferred from a restricted SNP panel.
Elastic net models were re-trained on the BASEL1 sample
using the SNPs overlapping between 1000G, HapMap
SNPs, and BASEL1 imputed SNPs (n = 2,228,898 mar-
kers). Models reaching the minimum 7* initially observed
in the training and BASEL2 testing datasets were retained,
yielding n = 82,885 models, showing performance com-
parable to the EstiMeth models implemented on the
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BASEL1 dataset (correlation between cross-validation
across all EstiMeth CpGs>0.99; correlation between
BASEL2 testing > > 0.99).

Simulation studies

Type I error rate was assessed on 1000 repeats of
genome-wide MetaMeth scan using phenotypes randomly
generated from a normal distribution. The power study
was performed by generating, for each CpG, a phenotype
showing an average r=0.27 with the EstiMeth estimate.
This corresponds to an effect size of 7.1%, detectable with
50% power considering the BASEL2 sample size N =319
and genome-wide significance threshold a = 0.05/86,518.
This procedure was repeated 300 times per CpG.

Transcriptomic analyses
Data processing

Blood samples were collected using PAXgene Blood
RNA Tubes (PreAnalytix Qiagen/BD, Switzerland).
Expression profiles were obtained for N =408 individuals
of the BASEL1 sample using the Affymetrix GeneChip
Human Transcriptome Array 2.0 (see Supplementary
text), providing quantification of expression levels for
~67K transcript clusters (referred as genes). Individual
expression values were adjusted for age and sex using
linear regression. Expression signals were adjusted for
unknown technical confounders while preserving local
genuine genetic effects. This was achieved by examining
the number of identified cis-expression quantitative trait
loci (eQTL) while further adjusting expression values for
increasing number of principal components;*>*" this
procedure was repeated until no increase in the number
of identified eQTLs was observed anymore, leading to 23
components retained for final adjustment of expression
values. Only genes annotated to RefSeq identifiers were
considered for analysis. The annotation was based on the
manufacturer’s information (GPL17586-45144) curated
using the UCSC database version Oct 2015. This yielded a
total of 21,186 autosomal genes entering subsequent
analyses.

Association testing between DNAm and expression traits
The relationship between DNAm and expression traits
was examined considering for each gene all CpGs located
within +1 Mbp from gene boundaries (N = 397,731 sites
out of 397,947 CpGs from BASEL1 sample). Statistical
association testing was performed using Pearson’s corre-
lation test. Genome-wide significant associations were
identified using Benjamini-Hochberg FDR correction.
Expression signals were optimally processed for preser-
ving genetic effects (see paragraph Data processing). In
order to check whether this procedure possibly biased the
over-representation of EstiMeth genetically driven CpGs
among identified associations, the genome-wide CpG-
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gene association scan was re-conducted on expression
data adjusted for main confounders only (batch effect
adjustment using ComBat method implemented in the
sva R package®® age, sex, and the seven first principal
component axes that showed strong association with
blood cell subtype composition). This analysis led to the
identification of 11,760 significant associations (FDR <
0.05), implicating 8530 CpGs, among which 74% involved
EstiMeth CpGs, convergent with results obtained from
the primary analysis.

Genetic association analysis of DNA methylation and gene
expression

For ensuring independence of the expression trait and
the EstiMeth models, all models were re-trained on the
BASEL2 dataset using the same methodology as for the
initial EstiMeth implementation. Out of 86,710 models, a
total of 83,337 non-null models could be inferred in the
BASEL?2 dataset and entered subsequent analyses. In turn,
estimated DNAm values were obtained in the BASEL1
dataset using these EstiMeth models implemented on the
BASEL2 dataset. These estimated values were subse-
quently tested for association with expression trait at their
co-localizing gene(s). DNAm-expression associations
were also examined under adjustment for EstiMeth
models: DNAm was adjusted for EstiMeth estimated
values using linear regression, and next tested for asso-
ciation with gene expression.

MetaMeth application to GWAS summary statistics
GWAS summary statistics of Psychiatric Genomics
Consortium (PGC) schizophrenia (SCZ) analysis
(52 samples; 34,241 cases, 45,604 controls and 1235
parent-affected offspring trios)**> were downloaded from
https://www.med.unc.edu/pgc/files/resultfiles/scz2.snp.
results.txt.gz. GWAS summary statistics for inflammatory
bowel disease (IBD) obtained from meta-analysis across
34,652 European samples®® were downloaded from
https://www.ibdgenetics.org/downloads.html, file: EUR.
IBD.gwas_info03_filtered.assoc); summary statistics for
rheumatoid arthritis (RA) obtained from meta-analysis
across 58,284 European samples®* were downloaded from
http://plaza.umin.ac.jp/~yokada/datasource/software.htm
(file: RA_GWASmeta_European_v2.gz); summary statis-
tics for Alzheimer’s disease (AD) obtained from meta-
analysis across 54,162 European samples®® were down-
loaded from http://web.pasteur-lille.fr/en/recherche/
u744/igap/igap_download.php (file: IGAP_stagel.txt);
summary statistics for Height obtained from meta-
analysis across 253,288 European samples®® were down-
loaded from http://portals.broadinstitute.org/
collaboration/giant/index.php/
GIANT _consortium_data_files#GWAS_Anthropometri-
c_2014_Height. MetaMeth scans for SCZ, AD, IBD, and
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RA were conducted considering EstiMeth models imple-
mented on the BASEL1 SNP panel (n=86,710) and
corresponding SNP covariance structure inferred from
BASEL1 dataset. MetaMeth analysis of height GWAS
summary statistics was conducted considering EstiMeth
models implemented on the HapMap SNP panel (n=
82,885) and covariance structure inferred from BASEL1
dataset. SNPs with allelic mismatch between GWAS
report and EstiMeth models were discarded. For each
analysis, models reaching a SNPs coverage greater or
equal to 80% (e.g., percentage of SNPs included in Esti-
Meth overlapping with GWAS SNPs) were retained (SCZ:
n = 86,380; AD: n = 84,288; Height: n =72,532; IBD: n =
86,567; RA: n=85,620). For each analysis, multiple test-
ing adjustment was performed using Bonferroni method
for the number of tests conducted.

Analysis of correlation patterns between whole blood and
brain

We downloaded summary statistics of concordance of
CpG signals between blood and brain from (https://
redgar598.shinyapps.io/BECon/ (1 =413,466 CpGs)®>’.
Briefly, these metrics report, for each CpG, the coefficient
of variation (CV) of p-values in whole blood, and corre-
lation coefficients between blood and each of three brain
tissues (Brodmann areas 7, 10, and 20), derived from 63
paired methylomic samples (16 unique subjects). As
reported in the original publication®”, a CpG was con-
sidered as potentially informative between blood and
brain tissues if it met the following criteria: (1) sufficient
inter-individual variability in whole-blood DNAm char-
acterized by a CV > 0.1; (2) concordance between whole
blood and at least one brain tissue, characterized by
absolute Spearman's correlation value >0.36 for BA7,
>0.4 for BA10, and >0.33 for BA20 (n=39,360). Sig-
nificance of enrichment of informative CpGs across
EstiMeth CpGs was assessed using 10,000 permutations,
each of which consisted of counting the number of
informative CpGs within a randomly sampled #z-set of
CpGs (n equals to number of EstiMeth CpGs).

Code availability
The EstiMeth genetic models are made publicly avail-
able at http://mcn.unibas.ch/files/EstiMeth_Distribution.

zip.

Results
Estimation of genetically driven DNA methylation

We estimated, under an additive genetic model, the
genetically driven proportion of DNAm at a given CpG
site, as a linear combination of SNPs in cis of that site.
Starting from a reference dataset of samples for which
both methylation and genotypic data are measured, the
weights of this linear combination can be obtained using a
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multiple regression approach between SNPs and corre-
sponding DNAm. In analogy to the approach adopted
previously for gene expression®, we opted for a elastic net
penalized multiple regression method® to infer SNP
weights of the DNAm estimators (Fig. 1a). This method
comes with the advantage of performing marker selection,
thus providing sparse solutions. Subsequently, the
genetically driven DNAm signal can be estimated in
independent individuals as the linear combinations of the
inferred weights and observed genotypes (Fig. 1b). In this
independent sample, the derived genetic estimate of
DNAm at a given CpG is amenable to genetic correlation
testing with the phenotype under study (Fig. 1b).

Our reference dataset comprised N = 533 healthy young
adults (BASEL1 dataset, see Materials and methods), who
underwent both whole-blood methylomic profiling and
genome-wide SNP assessment. Prior to analysis, the
DNAm signal was adjusted for technical and biological
confounders (see Materials and methods), and genotypes
were imputed using the Michigan imputation server®
(https://imputationserver.sph.umich.edu/index.html, see
Materials and methods).

In the reference sample, a elastic net model was trained
between common cis-SNPs (MAF > 0.05, located within
+1 Mbp of a CpG site) and adjusted DNAm signal at each
individual CpG site (see Materials and methods). From
395,014 CpG sites investigated, a total of 236,923 non-null
models (i.e., at least one site selected by penalized
regression) could be fitted, with cross-validation 7*
accounting on average for 6.9% of variance of the DNAm
signal.

Unlike univariate testing, the elastic net approach
allows for simultaneous modeling of the joint effects of
multiple cis-markers that are likely to impact on DNAm
at a given CpG site'®. We compared the fraction of var-
iance of DNAm explained by the elastic net models
(cross-validation %) with the fraction of variance
explained by the single best methylation quantitative trait
loci (mQTL) identified at each CpG site. We observed
substantial gain in average »* retrieved by the multiple
regression elastic net over single-marker univariate testing
(Fig. 2). At the modeled CpGs (i.e., 236,923 non-null
elastic net models), SNP-based heritability derived from
recently published estimates in whole-blood samples®®
averaged 9%. Thus, at these CpGs, the implemented
performance of our models (6.9%) was close to the max-
imum variance in DNAm that can theoretically be
explained by common SNPs. In addition, per-CpG cross-
validation 7* showed high correlation with reported SNP-
based (r=0.53) and total heritability (r = 0.62) estimates
across all modeled CpGs. Among CpGs for which no
elastic net model could be fitted (N = 158,091 CpG sites),
lower SNP-based heritability was observed, with an
average of 4%.


https://redgar598.shinyapps.io/BECon/
https://redgar598.shinyapps.io/BECon/
http://mcn.unibas.ch/files/EstiMeth_Distribution.zip
http://mcn.unibas.ch/files/EstiMeth_Distribution.zip
https://imputationserver.sph.umich.edu/index.html
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To assess the validity of the inferred genetic estimators
we examined their accuracy to predict DNAm in an
independent sample comprising whole-blood methylomic
profiles from N =319 healthy young adults (BASEL2
dataset, see Materials and methods). The correlation of
model performance between training and testing samples
across all modeled CpGs was high (r=0.96) (Supple-
mentary Figure 1). Moreover, the average performance
(i.e., proportion of variance of the DNAm signal explained
by the genetic models) of the testing sample (*: 7.6%) was
very close to the corresponding performance of the
training sample (*: 6.9%). These findings demonstrate
high stability and generalization capability of the imple-
mented genetic models. A set of 86,710 genetic models for
DNAm estimation was identified as highly robust, show-
ing significant (FDR <0.05) and consistent correlation
with DNAm across the two independent BASEL1 and
BASEL2 datasets (see Materials and methods) (example
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shown in Fig. 3). These genetic estimators of DNAm are
termed hereafter EstiMeth models.

The EstiMeth models were additionally tested in an
independent dataset comprising whole-blood methylomic
profiles from N = 288 elderly adults (ACD BONN dataset,
see Materials and methods). We observed high correlation
(r=0.83) of EstiMeth model performance between the
BASELL1 training and the ACD BONN dataset. In the
ACD BONN dataset, the models accounted on average for
13.9% (mean testing r*) of DNAm (mean cross-validation
#: in the BASEL1 sample was 17.9% for EstiMeth mod-
els). This result further supports the robustness of the
derived models in whole blood.

In real-life applications, not every SNP for a given
EstiMeth might be available in the sample under study.
On the other hand, EstiMeth SNPs in pair- or group-wise
linkage disequilibrium might ensure robustness of the
estimates also under incomplete SNP coverage. Therefore,

-
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Fig. 1 Estimation of genetically driven DNAm for genetic association testing with complex traits. a In a reference sample, a elastic net

penalized multiple regression model is built between SNPs in cis of a given CpG site, and DNAm signal (blue). The linear combination of the inferred
weights w at selected genotypes (encircled in yellow) represents the genetically driven estimate of DNAm signal (gray). b The genetic model is used
to estimate genetically driven DNAm in independent individuals, from observed genotypes; this estimate can be tested for association with a

sample’s trait. In case genotypic data are not accessible (), the association statistic can be approximated using the model's weights, the trait GWAS
summary statistics (SNP to trait association), and the covariance structure of model's SNPs inferred from a reference sample (different blue dot sizes
represent different covariance levels between pairs of SNPs in the reference sample). Figure 1 from Gusev et al.” served as a template for this figure
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Fig. 2 Comparison of average fraction of variance of DNAm
variance explained by penalized multiple or univariate
regression. Mean r* corresponds to cross-validation performance of
the elastic net model in the BASEL1 dataset, averaged across the top n
CpGs (yellow), and r* for the top identified mQTL per CpG averaged
across the top n CpGs (blue)

we examined the performance of EstiMeth models after
repeatedly discarding at random 10% of markers in the
BASEL2 dataset (see Materials and methods). This
resulted in an overall average distribution of 7* that was
very close to the original distribution (Supplementary
Figure 2), indicating high stability of most of the models
under incomplete SNP coverage. We provide EstiMeth
models together with summary statistics of their perfor-
mance under varying missing rates, thereby enabling the
estimation of the stability of each individual model.

We also examined whether inter-individual variability
in whole-blood cell composition affects the EstiMeth
models. In the two independent BASEL2 and ACD
BONN testing datasets, we observed high consistency
between the fraction of variance in DNAm accounted for
by the models (r> 0.99) before and after adjustment for
estimated cell type proportions (see Materials and meth-
ods) (Supplementary Figure 9), thus ruling out relevant
confounding of the derived models by differences in
whole-blood cell composition.

Genetically driven DNAm is associated with gene
expression of co-localizing genes

Each EstiMeth model corresponds to a CpG that
is likely to be under strong genetic control. Given the
role of DNAm in the regulation of gene expression®,
we investigated the relationship between EstiMeth CpGs
and expression levels of neighboring genes. Expression
levels at ~20K genes were obtained for N =408 indivi-
duals from the BASEL1 dataset (see Materials and
methods).

e N s N\
cg05625103
Elastic net 4+
Multiple Regression
801 maTL BASEL1 Training
70~ BASEL2 Testing
2
R 60-
oL £
c 50- <
I 4
2 o
= 4o- 0
30-

—24

0
EstiMeth
Fig. 3 Example of a robust EstiMeth model. Horizontal axis
represents the DNAm value estimated from the EstiMeth model at the
CpG site. Vertical axis represents the observed DNAm value (adjusted
for main confounders). The 7 is the fraction of variance of DNAM
signal explained by the EstiMeth model (in %)

First, we performed genome-wide association testing
between DNAm and expression levels of genes located
within +1 Mbp of any CpG site (N = 397,731 sites). We
identified 26,925 significant associations (FDR < 0.05),
involving 6160 genes and 17,867 CpGs. Among these
CpGs, we observed significant over-representation of
EstiMeth CpGs (78% of EstiMeth CpGs among 17,867
CpGs associated with expression; 22% of EstiMeth CpGs
across all investigated CpG sites; Fisher's test p <2.2e
~16).

We also observed that EstiMeth CpGs, which were
associated significantly with gene expression, were over-
represented in shores (Supplementary Figure 3), which is
in line with previous reports®. These results indicate that
genetically driven (i.e., EstiMeth) CpGs are more likely to
correlate with expression of co-localizing genes. This
observation might also reflect the existence of shared
genetic contributions between EstiMeth CpGs and the
expression of their co-localizing genes.

To test this hypothesis, we performed association test-
ing between estimated DNAm values of each EstiMeth
model and gene expression in cis (£1 Mbp). Given that
gene expression was measured in the BASEL1 dataset, all
EstiMeth models were re-implemented using the inde-
pendent BASEL2 dataset as reference to prevent over-
fitting (see Materials and methods). Subsequently, a total
of 2 million EstiMeth gene pairs were tested for associa-
tion. We observed substantial deviation of genetic asso-
ciation signals from the null uniform distribution (Fig.
4b), with particular over-representation of large effect
sizes. To further test whether EstiMeth models account
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for part of the shared variance observed between DNAm
and expression, we also examined the DNAm expression
associations after regressing out the effect of EstiMeth
estimated DNAm values. We observed a consistent and
substantial decrease of detected association signals (Fig.
4b). Notably, within CpG-gene pairs identified as genome-
wide significant (FDR < 0.05), the average fraction of
shared variance between DNAm and expression traits
dropped from r*=9.6% to 2.3% after adjustment for
EstiMeth model effects. These results support the exis-
tence of shared genetic contribution between DNAm and
gene expression in cis, captured by the EstiMeth models.

Interestingly, the fraction of expression variance
explained by the EstiMeth models was on average higher
than the corresponding fraction explained by the DNAm
signal alone (all EstiMeth CpG-gene pairs: r* = 0.6% vs.
=0.4%, Student's f-test p-value <2.2 x 10716, genome-
wide significant CpG-gene pairs: > = 16.9% vs. > = 9.6%
Student's t-test p-value <2.2 x 10™'¢) (Fig. 4b). This
suggests that the EstiMeth models are also likely to
include SNPs having DNAm-independent effects on gene
expression in cis. Of note, this increase in shared variance
was mostly observed for CpGs located nearby the tran-
scription start site of their associated gene (Supplemen-
tary Figure 4), a genomic location more likely to harbor
cis—eQTLs40.

Genetic correlation testing based on GWAS summary
statistics

Provided availability of individual genotypic data in a
given study sample, EstiMeth values can be readily
obtained as the linear combination between the weights
provided herein (derived from the BASEL1 dataset) and
the observed SNPs (Fig. 1b).

Yet, genotypic data from large-scale genome-wide
association studies are often not directly accessible.
Recently, methods have been proposed that allow impu-
tation of association statistics between genetic estimates
of gene expression and a given trait, based solely on
GWAS summary statistics”>’. Based on this body of work,
we extended the EstiMeth models to a ‘MetaMeth’
approach that allows genetic correlation testing from
GWAS summary statistics (Fig. 1c) (see Materials and
methods). The ¢-value for association between the Esti-
Meth estimated DNAm values and the trait can be
approximated using simultaneously: (1) EstiMeth SNPs’
weights, (2) the standardized GWAS summary statistics
(i.e., results from SNP to phenotype association), and (3)
the covariance structure of the SNPs included in the
EstiMeth model (see Materials and methods) (Fig. 1c).
The implementation relies on the covariance structure
from a reference population, provided it is genetically
congruent to the population under study (Fig. 1c). This
latter assumption represents a critical issue of the Meta-
Meth implementation, as slight shifts between the refer-
ence and actual population structures may potentially
induce biased estimates. In order to mimic such dis-
crepancies, we systematically assessed the validity of the
MetaMeth approach on the BASEL2 sample, while using
the SNP covariance structure inferred from the genetically
close, yet not identical, 1000G European (EU) population.
Of note, all EstiMeth models were re-trained on the
BASEL] dataset, restricted to SNPs present in both 1000G
and BASEL1 datasets, yielding a total of 86,518 retained
models (see Materials and methods).

Firstly, we examined the convergence of the EstiMeth
(i.e., genotype-based) and MetaMeth (i.e., summary sta-
tistics-based)  genetic  correlation  approaches by
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considering height as the complex trait under study.
Under quasi-interchangeability of the two approaches, the
MetaMeth Z-statistic should be close to the T-value
obtained by testing directly association between height
and the corresponding EstiMeth estimated DNAm values.
Using the SNP covariance structure from the BASEL2
dataset, i.e., the actual population structure, the correla-
tion between genetic correlation statistics was close to 1
(Fig. 5). We next used the SNP covariance structure
derived from two independent population panels (ie.,
BASEL1 dataset and 1000G EU dataset). The correlation
between statistics obtained from the two approaches
remained equal to 0.999 (Fig. 5), supporting the validity of
the MetaMeth approach.

In a second stage, we estimated the Type I error rate of
the MetaMeth approach. We performed a genome-wide
MetaMeth scan on 1000 phenotypes generated from a
normal distribution. The distribution of the minimum p-
value obtained per run yielded a 5% quantile equal to 7.4e
—07 (Supplementary Figure 5), which is above the
Bonferroni-adjusted significance threshold for a given
genome-wide scan (p = 5.8e—7). This indicates that under
realistic settings the proposed MetaMeth yields con-
servative association statistics.

We next compared the power of the MetaMeth and
EstiMeth methods. At each CpG we repeatedly generated
a trait that was associated with EstiMeth estimated
DNAm values at large effect sizes (i.e., r* = 7.3% yielding
an association detectable at 50% power under Bonferroni
adjustment for multiple testing). Over all CpGs, the
MetaMeth achieved lower average power (44.8%) as
compared to the EstiMeth method (Supplementary Figure
6). Yet, we observed that for 16% of CpGs, the power of
MetaMeth exceeded the power reached with the EstiMeth

approach. These results indicate that in case of genuine
association between EstiMeth and a trait, provided large
effect sizes, the MetaMeth approach can lead to biased
estimates of T-statistics, resulting in globally reduced
power of detection.

MetaMeth application to large-scale GWAS

We first applied MetaMeth on summary statistics
obtained from the recently published schizophrenia PGC
large-scale mega-analysis of GWAS results®”>. MetaMeth
statistics were derived considering the 86,710 EstiMeth
models implemented on the BASEL1 SNP panel and the
corresponding BASEL1 covariance structure (see Mate-
rials and methods).

We observed a highly significant deviation of MetaMeth
statistics from the null uniform distribution (Supple-
mentary Figure 8). In particular, we identified a total of
469 associations withstanding genome-wide Bonferroni
adjustment (unadjusted p-value <5.78¢—07). For the
majority of these hits (n =412, 87.8%), the corresponding
EstiMeth model included at least one marker exhibiting a
GWAS association p-value that would have reached a
genome-wide GWAS Bonferroni adjustment significance
threshold (p <5e—08) (Supplementary Table 2). The
majority of the identified CpGs (460 out of 469) lie within
+1 Mbp of 47 regions out of the 105 reported as inde-
pendent autosomal genomic loci associated with schizo-
phrenia (average genomic loci size: 202 kbp), or are found
within the extended major histocompatibility complex
(MHC) region (Supplementary Table 2).

We additionally applied MetaMeth on summary statis-
tics results from well-powered GWAS, including AD*®,
RA%* IBD* and Height36 (see Materials and methods).
Significant associations (Bonferroni adjusted p < 0.05 for
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the number of CpGs investigated within a given Meta-
Meth scan) were identified in each GWAS investigated
(AD: n=31; RA: n =402; IBD: n = 317; Height: n = 1934)
(Supplementary Tables 3—6). The majority of identified
signals arose from EstiMeth models including at least one
genome-wide significant GWAS hit (between 92 and 95%
across investigated GWAS). In addition, for almost all
identified signals, at least one SNP reaching GWAS
genome-wide significance (p < 5e—08) was located within
+1 Mbp of the CpG site (from 98 to 100% of significant
hits across investigated GWAS, Supplementary Tables 3—
6). A total of 90 CpGs identified as significantly associated
with schizophrenia (19% relative to 469 CpGs) overlapped
with CpGs associated with RA (n = 47) and/or Height (n
= 46) with an important fraction located on chromosome
6 (66%) within or nearby the extended MHC locus
(Supplementary Table 7). Overall, we observed a total of
154 CpGs identified in more than one MetaMeth scan,
with an important representation of CpGs (55%) located
within or nearby the extended MHC locus (Supplemen-
tary Table 7).

Thus, these results demonstrate that MetaMeth iden-
tified, among the large number of significant susceptibility
variants for such polygenic disorders as schizophrenia, the
ones that impact on disease risk probably through reg-
ulation of site-specific DNAm.

Enrichment analysis for whole-blood and brain tissue-
concordant CpGs

Recently, subsets of CpGs showing co-varying patterns
between blood and brain tissue DNAm*! and enrichment
of mQTLs among such CpGs®” were described. We thus
investigated the distribution of co-variation patterns
between whole-blood and brain tissue at EstiMeth CpGs,
using recently published results derived from paired
whole-blood Brodmann areas 7 (BA7), 10 (BA10) and 20
(BA20) samples across N=16 subjects®’. We observed
significant enrichment of CpGs previously reported as
concordant between whole-blood and brain tissues®
among EstiMeth CpGs (1 = 18,910; 22% relative to 86,710
EstiMeth CpGs; permutation based p<le—04) (see
Materials and methods). This suggests that a significant
subset of the identified genetically driven CpGs show
consistent DNAm pattern between blood and brain tissue.

Discussion

We generated genetic estimators of epigenetic regula-
tion—EstiMeth—that leverage genetic contributions to
DNAm in whole blood to identify epigenetic under-
pinnings of complex traits. EstiMeth models together with
MetaMeth and 1000G reference structure programs are
made publicly available. By capitalizing on multiple co-
localized genomic loci likely to impact on the DNAm
signal, we identified a set of genetic estimators accounting
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on average for a modest, yet highly consistent fraction of
variance in DNAm across independent samples.

Inter-individual variation in DNAm correlates with
variation in expression levels of co-localizing genes pos-
sibly through shared genetic factors'"'*. Here, integration
of both methylomic profiles and gene expression data
revealed that EstiMeth models accounted for a substantial
fraction of the shared phenotypic variance between both
molecular traits. This suggests that, in line with a recent
report*?, local genetic variations represent an essential
factor underlying the observable inter-individual rela-
tionship between gene expression and DNAm at adjacent
CpG sites. Importantly, the identified associations do not
always imply direct causality between genetically driven
DNAm and gene expression, as the EstiMeth models
possibly include SNPs exerting independent effects on
each trait'"'?,

We also combined the genetic estimators for DNAm
with recently proposed methods that allow applicability of
these estimators to SNP summary statistics solely (i.e., in
the absence of individual genotypic data)”*’. This
approach, applied to recent large-scale GWAS results for
schizophrenia®?, resulted in the identification of 469 sig-
nificant associations. This suggests the existence of shared
genetic contributions between whole-blood DNAm and
schizophrenia risk which is consistent with recent
reports43'44. Of note, it cannot be excluded that the
identified associations can also be partly driven by genetic
loci exerting independent effects on each trait. A majority
of the identified associations implicated genome-wide
significant GWAS hits, whilst encompassing slightly less
than half of the 105 genomic regions associated with
schizophrenia®. In analogy to the findings obtained in the
schizophrenia GWAS, the MetaMeth approach revealed
significant associations with AD, RA, IBD, and Height,
with the majority of the detected signals pointing to
genome-wide significant GWAS markers. Importantly,
each association suggests shared genetic contributions
between a given trait and whole-blood DNAm variation at
a specific CpG site. These results altogether highlight the
potential of MetaMeth to decipher, from large-scale
GWAS results, trait-associated loci that are putatively
mediating their effect through methylation at given CpG
sites, and to prioritize specific genomic loci for down-
stream functional validation.

Given the tissue-specific nature of DNAm, no direct and
mechanistic link can be inferred between the identified
MetaMeth association signals for schizophrenia and
DNAm patterns observed in brain tissue. In line with
previous results, we nevertheless observed that CpGs
showing concordant DNAm patterns across whole-blood
and brain tissue were enriched among genetically driven
EstiMeth CpGs®’. Thus, the provided genetic estimators
might also serve as a valuable tool for the study of co-
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variation patterns between peripheral and brain tissue
DNAm, whenever intra-individual multi-tissue samples
are not available.

On the side of limitations, it should be stressed that the
EstiMeth models were inferred and tested on moderately
sized whole-blood samples. For about one-third of the
investigated CpGs, characterized though by lower average
SNP-based heritability, no elastic net model could be fit-
ted from our training sample. Thus, additional local
genetic contributions to DNAm might be detected with
increasing sample sizes.

The fraction of variance explained by the EstiMeth
models refers to DNAm signal after adjustment for main
confounders. As for any omics dataset, such confounders
are usually unknown and estimated empirically in a study-
specific manner. This might ultimately impact on the
fraction of variance in DNAm that can be retrieved by the
derived genetic estimators. For instance, in our study, we
observed that these estimators showed, on average, higher
performance on a testing sample as compared to the
training sample. Thus, although high stability was globally
observed between performance of the models across the
investigated samples, inference on multiple independent
datasets, and multiple tissues, is warranted to fully
appreciate their generalizability.

We also note that we generated a genetic estimator of
DNAm at each single CpG site. Although this provides a
straightforward way of annotating the models, it also
results in certain redundancy of the estimators for highly
correlated CpG sites. This in turn leads to a number of
inferred estimators, which, unlike genetic estimators for
gene expression, allow only for a moderate reduction of
multiple testing burden in GWAS*’. In addition, the
derived genetic estimators were built on cis neighboring
SNPs only. Although we globally observed high con-
sistency of the inferred models’ performance with pub-
lished SNP-based heritability estimates, the performance
was on average lower than the reported common SNP
heritability. This gap might be explained by additional
trans genetic components likely to contribute to inter-
individual variability in DNAm'>'®**, Improved accuracy
might thus be achieved by extending the modeling to
trans genetic components, as was recently shown for gene
expression™”.

We would also like to stress that the 450k array used in
this study captures both methylation (5mC) and hydro-
xymethylation (5hmC). Even though the 5hmC mark
remains strongly underrepresented in whole-blood tis-
sue*®™*®, we cannot totally rule out a possible contribution
of this mark to the detected signals reported herein.

Concerning the MetaMeth extension, we could derive
empirical settings that showed appropriate control of
Type I error in the investigated sample, yet at the cost of
decreased average power of detecting genuine
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associations. Robustness of the derived statistic is also
tightly linked to the genetic discrepancy between the
reference and study population, which might not be easily
evaluated in practice. This calls for assessment of the
stability of the approach on larger independent samples
from varying populations.

In conclusion, we provide genetic estimators for DNAm
in whole blood that can effectively complement genetic
estimators for gene expression to gain insight into the
molecular underpinnings of complex traits.
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